TUGboat, Volume 0 (2001), No. 0

UTF-8 installations of TEX
Igor Liferenko

Abstract

In its design TEX has the concepts of “internal
encoding” and “external encoding”. This fact allows
TEX to work with any encoding.

We use Unicode as TEX’s external encoding.
Then we change the necessary parts of TEX to use
UTF-8 as the input/output encoding.

The resulting implementation passes the trip
test.

1. Initialization

Note: we use the web2w [1] implementation of TEX,
but the ideas described here can be applied to any
implementation.

First, we change the data type of characters
in text files to wchar_t to accommodate Unicode
values.

Background: this predefined C type allocates
four bytes per character. Character constants of this
type are written as L’ ...’ and string constants as
L"...m.

(For brevity, in the diffs following, the original
code from web2w’s tex.w source is preceded with
< characters, and the new code with >. Both are
sometimes reformatted for presentation in this arti-
cle, and for readability we sometimes leave a blank
line between the pieces.)

< @d text_char unsigned char

> @d text_char wchar_t

Use values from basic multilingual plane (BMP)
of Unicode.

< @d last_text_char 255
> @d last_text_char 65535

Then we change the size of the zord array [2]
to 216 bytes.

< ASCII_code xord[256];
> ASCII_code xord[65536];

Elements in the zchr array [2] are overridden
using the mapping.w file (see section 5).

@i mapping.w

TEX_format_default is in TEX’s external encod-
ing.
< ASCII_code TEX_format_default

< [1+format_default_length+1]
< =" TeXformats/plain.fmt";

preliminary draft, 30 Sep 2020 16:16

preliminary draft, 30 Sep 2020 16:16 901

> wchar_t TEX_format_default
> [1+format_default_length+1]
> =L" TeXformats/plain.fmt";

It remains to specify that the C library func-
tions for conversion to and from Unicode work with
UTF-8:

setlocale(LC_CTYPE, "C.UTF-8");
and to add the necessary headers.

#include <wchar.h>
#include <locale.h>

2. Input

For automatic conversion from UTF-8 to Unicode,
text files (including the terminal) must be read with
the C library function fgetwe [3].

In the original tex.w, the macro get is used for
reading text files, as well as tfm and format files.

Text files are read in the functions a_open_in
and input_ln. In a_open_in we replace the macro
reset with its expansion and then in both functions
we change get ((*f)) to (xf).d=fgetwc((*f).f)

3. Output

For automatic conversion from Unicode to UTF-8,
text files (including the terminal) must be written
with the C library function fwprintf [3].

In the original tex.w, in all cases but one, the
macro write is used for writing text files. So, we
change fprintf to fwprintf in the definition of
write. The one case where write is used is for writing
dvi files— there we just use its old expansion.

In addition to redefining the macro write, we
need to add the ‘L’ prefix to strings which are used in
the macros that call the macro write. These changes
are trivial and there are quite a few of them so we
will not list them here. Instead, we show the fol-
lowing cases, where the conversion specifier in the
printf-style directives also needs to change:

< wterm("%c",xchr([s]);

> wterm(L"%1lc" ,xchr([s]);

< wlog("%c",xchr[s]);
> wlog(L"%lc",xchr[s]);

< write(write_file[selector],"%c",xchr([s]);
> write(write_file[selector],L"%1lc",xchr[s]);

Also, change the condition, which is used while
generating the first 256 strings in the string pool, to
make the characters from mapping.w printable, in
addition to 95 standard ASCII characters.

preliminary draft, 30 Sep 2020 16:16



902 preliminary draft, 30 Sep 2020 16:16

4. The file name buffer

The name of the file to be opened, which is stored in
the name_of_file buffer, must be encoded in UTF-8.
Therefore, each character passed to append_to_name,
before being added to name_of_file, must be con-
verted to UTF-8. This is done using the C library
function wctomb [3].

In the append_to_name macro, the variable k is
used as the index into the name_of_file buffer where
the last byte was stored. Originally, k£ was always
increased and provisions were made that charac-
ters will not be written beyond the end of buffer
(which has the index file_name_size); name_length
was then set to the minimal value between k£ and
file_name_size.

We cannot do the same in our implementation,
because we may reach the end of the buffer in the
midst of a multibyte character. Instead, if the next
multibyte character does not fit into the buffer, we
prevent k from being increased by negating its value:

< @d append_to_name(X) { c=X;incr(k);

< if (k <= file_name_size)

< name_of_file[k]=xchr[c]; }

> @d append_to_name(X) { c=X;

> if (k >= 0) { /* try to append? */
> char mb[MB_CUR_MAX];

> int len = wctomb(mb, xchr[c]);

> if (k+len <= file_name_size)

> for (int i = 0; i < len; i++)
> name_of_file[++k] = mb[i];

> else

> k = -k; /* freeze k *x/ } }

In pack_file_name and pack_buffered_name (the
functions that call append_to_name), we have to “un-
freeze” its value if it was “frozen”.

if (k < 0) k = -k;

In make_name_string, each (multibyte) charac-
ter from name_of_file must be converted from UTF-8
to Unicode, before being converted to TEX’s internal
encoding. This is done using the C library function
mbtowe [3].

< append_char (xord[name_of_file[k]]);

> { wchar_t wc;

> k += mbtowc(&wc, name_of_file+k,
> MB_CUR_MAX) - 1;

> append_char (xord[wcl); }

In the code checking format_default_length for
consistency, we use the C library function wecstombs
[3] to count the number of bytes in the UTF-8 rep-
resentation of TEX_format_default.

preliminary draft, 30 Sep 2020 16:16

TUGDboat, Volume 0 (2001), No. 0

< if (format_default_length > file_name_size)

> if (wcstombs (NULL,TEX_format_default+1,0) >
> file_name_size)

In the function pack_buffered_name, the code
that drops excess characters assumes that each char-
acter is one byte. But the number of bytes used to
represent a character in UTF-8 may be more than
one. Therefore, after appending the contents of buf-
fer[a .. b] to name_of_file, we roll back in it char-
acter by character until format extension fits to it.
We use the C library function mblen [3] to determine
the start of a multibyte character to be discarded.

while (k+wcstombs(NULL,TEX_format_default+

format_default_length-format_ext_length
+1,0) > file_name_size) { k--;
while (mblen(name_of_file+k+1,MB_CUR_MAX)==
-1) k--; }
This code in pack_buffered_name becomes unneces-
sary and is removed:
if (n+b-a+l+format_ext_length >
file_name_size)
b=a+file_name_size-n-1-format_ext_length;

5. Usage

The source of the present implementation can be
obtained from

https://github.com/igor-liferenko/tex

Download it and switch to the directory tex.

In this directory create the file mapping.w and
put there character(s), required for a particular in-
stallation of TEX, for example:

xchr [0xf1] = L’&’;

A complete example of mapping.w can be found

in:
https://github.com/igor-liferenko/cweb
Then run the following commands:
CWEBINPUTS=.:.. make -C web2w
patch -o tex.w web2w/tex.w utex.patch
ctangle tex
gcc -DINIT -o initex tex.c -1lm
gcc -DSTAT -o virtex tex.c -1m
References

[1] Ruckert, Martin. WEB to cweb.
hint.userweb.mwn.de/hint/web2w.html

[2] Knuth, Donald E. TEX: The Program, 1986.
ISBN 0201134373.

[3] Single Unix Specification. Introduction to
ISO C Amendment 1 (Multibyte Support

preliminary draft, 30 Sep 2020 16:16



TUGboat, Volume 0 (2001), No. 0 preliminary draft, 30 Sep 2020 16:16 903

Environment).
http://unix.org/version2/whatsnew/
login_mse.html

¢ Igor Liferenko
igor.liferenko (at) gmail dot com

preliminary draft, 30 Sep 2020 16:16 preliminary draft, 30 Sep 2020 16:16



